

The newly-designed APS Arosio frame for 45 $\mathrm{mm} / 1.77$ " panel is equipped with a profile offering additional advantages over traditional frames. A special housing mounts the new extruded EN AW 6060 T6 "panel block", which makes it possible to install the panels easily and without using screws. The Stopper system reduces assembly time and increases the sturdiness of large-size frames: just insert the profile in the slots on the corners and secure in place with M6 screws. The structure of the module is completed by a nylon cover and cap, which ensure perfect closure. The Stopper system makes installing or removing the panels a quick and simple operation. The performance of the unit remains unchanged even when the panels are taken down frequently, avoiding leaks caused by the repeated fastening of the screws.

The APS Arosio Stopper system is completed by a special hinge made of EN AB 46100 die-cast aluminium. The panel-fastening system introduced with the Stopper line requires the hinges to allow a $7 \mathrm{~mm} / 2.75$ " gap while continuing to ensure the sealing of the gaskets. The new CBP-65-030 hinge performs this task with great precision, optimizing the distance between the holes and the placement on the uprights. Sturdy and lightweight, it can safely bear loads of more than $22 \mathrm{~kg} / 48.5 \mathrm{lb}$. The new hinges are available with a black or natural aluminium finish. Also available are a nylon panel block and an EPDM foam gasket to be inserted into the groove on the Panel block profile to prevent dirt from depositing whenever the door is opened.

Cutting conditions of the profiles

$A=Y-151.4 \mathrm{~mm} / 5.9 "$	$\mathrm{D}=\mathrm{X}-111.4 \mathrm{~mm} / 4.34^{\prime \prime}$
$B=Y-111.4 \mathrm{~mm} / 4.34^{\prime \prime}$	$E=Y-141.4 \mathrm{~mm} / 5.51^{\prime \prime}$
$C=Y-151.4 \mathrm{~mm} / 5.9^{\prime \prime}$	

The formulas are valid for all sides of the module $\mathrm{Y}=$ external dimension

Nylon accessories

TECHNICAL DATA

ABP530-450

GBP250-450

Aluminium profiles

| TECHNICAL DATA | Extruded aluminium EN AW 6060 |
| :--- | :--- | :--- |
| Material | T6 |
| Treatment | RAL |
| Color | |

PBP351-450 Omega profile

Hinge

GUAR.020X4 Self-adhesive gasket

Panel block

Screws

V-25-BR000 M6 25 mm
Screws for omega joint

Material: Zinc nickel

Test of air tightness [internal report]

Corner	Profile	Sec	Liters	Coeff.	Area m^{2}	Transformed $\mathbf{f (4 0 0)}$	PR EN 1886:2003 Air leakage
ABP530-450	PBP150-450	$\mathbf{6 0}$	$\mathbf{4 , 5}$	$\mathbf{0 , 0 7 5}$	$\mathbf{4 , 9 7}$	$\mathbf{0 , 0 1 5 1}$	$\mathbf{L 1}$

Tests carried out with standard assembly product, without using silicone. Dimension of the tested unit: $853 \times 853 \times 730 \mathrm{~mm}$. Aim of the test was to catalog the actual performance of the APS structures without extra arrangements.
These values have created a starting point to improve our products.

Stopper system air leakage test with P3isomac panels

Air leakage test with 45 mm / 1.77" panel

Structure with the following Stopper system components:

- Profile PBP150-450
- Profile PBP351-450
- Profile PBP-100000
- Corner ABP530-450
- P3ISOMAC panels $490 \times 490 \mathrm{~mm}$
- Hinge CBP-65-030
- Gasket $20 \times 4 \mathrm{~mm}$ (panels)
- Gasket $20 \times 4 \mathrm{~mm}$ (door)

The equipped structure dimensions have been proportioned for $490 \times 490 \mathrm{~mm}$ panel

The test has been made on two different levels of constant negative pressure; respectively at 100 Pa and 880 Pa . Evaluations have been executed after measurements at one minute time intervals.

The following air leakage values have been obtained:

Test at 100Pa: loss $5 \mathrm{I} / \mathrm{min}-->300 \mathrm{I} / \mathrm{h}=0.3 \mathrm{~m} 3 / \mathrm{h}$
Test at 880Pa: loss $24 \mathrm{I} / \mathrm{min}-->1440 \mathrm{I} / \mathrm{h}=1.44 \mathrm{~m} 3 / \mathrm{h}$

